Wavefield tomography using reverse time migration backscattering
نویسندگان
چکیده
Reverse time migration backscattering contains kinematic information that can be used to constrain velocity models. The backscattering results from the correlation between forward scattered and backscattered wavefields from sharp interfaces, i.e., sediment-salt interfaces. The synchronization between these wavefields depends on the velocity of the sediment section and the correct interpretation of the sharp boundary. We have developed an optimization workflow in which the sediment velocity and the sharp boundary are updated iteratively. The presence of sharp boundaries in the model lead to highand lowwavenumber components in the objective function gradient; the high-wavenumber components correspond to the correlation of wavefields traveling in opposite directions, whereas the low-wavenumber components correspond to the correlation of wavefields traveling in the same direction. This behavior is similar to reverse time migration in which the high-wavenumber components represent the reflectors (the signal) and the low-wavenumber components represent backscattering (noise). The opposite is true in tomography: The low wavenumber components represent changes to the velocity model, and the high-wavenumber components are noise that needs to be filtered out. We use a directional filter based on Poynting vectors during the gradient computation to preserve the smooth components of the gradient, thus spreading information away from the sharp boundary. Our tests indicated that velocity models are better constrained when we include the sharp boundaries (and the associated backscattering) in wavefield tomography.
منابع مشابه
Acoustic wavefield imaging using the energy norm
Wavefield energy can be measured by the so-called energy norm. Using this norm, we propose an imaging condition that represents the total reflection energy and accounts for wavefield directionality in space-time, thus enabling us to attenuate backscattering artifacts in reverse-time migration (RTM). This imaging condition has the flexibility to attenuate any selected angle, and by exploiting th...
متن کاملElastic wavefield imaging using the energy norm
From the elastic wave equation and the energy conservation principle, we derive a new imaging condition for elastic wavefields. This imaging condition outputs a single image representing the total reflection energy and contains individual terms related to the kinetic and strain energy of the extrapolated wavefields. An advantage of the proposed imaging condition compared to alternatives is that...
متن کاملAnisotropy signature in extended images from reverse-time migration
Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at commonimage-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs,...
متن کاملAnisotropic elastic wavefield imaging using the energy norm
Based on the energy conservation principle, we derive a scalar imaging condition for anisotropic elastic wavefield migration. Compared with conventional imaging conditions that correlate displacement components or potentials from source and receiver wavefields, the proposed imaging condition does not suffer from polarity reversal, which degrades the image quality after stacking over shots. Our ...
متن کاملPrestack imaging of overturned reflections by reverse time migration
We present a simple method for computing angle-domain Common Image Gathers (CIGs) using prestack reverse time migration. The proposed method is an extension of the method proposed by Rickett and Sava (2001) to compute CIGs by downward-continuation shot-profile migration. We demonstrate with a synthetic example the use of the CIG gathers for migration velocity updating. A challenge for imaging b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014